

NMF products introduction

The fast and accurate measurement solution for aspherical and freeform optics

Dutch United Instruments

'To provide the fast and accurate measurement solution for aspherical and freeform optics'

DUI:

- Founded in 2017
- Part of DEMCON group (>900 FTE, >100 ME turnover)

NMF platform:

- Based on NANOMEFOS technology of TNO (2009)
- NMF800 S, NMF600 S and NMF350 S machines now available
- Easy to use NMF OS control and analysis software
- Multiple hardware and software module options (Off-axis, extreme freeform, analysis, ground surfaces, mounting tool etc.)

Contents

- Dutch United Instruments
- NMF platform
- Key principles
- Measurement examples
- NMF OS software
- NMF benefits

NMF platform approach

Combine 5 characteristics:

Universal

- Large volume
- High accuracy
- Non-contact
- Fast

NMF platform

One tool to cover all form metrology needs in modern high-end optics manufacturing

- Setup for any type of surface in minutes
- No setup costs
- Easy to use, results in minutes
- Measure during entire manufacturing process (from ground to finished)
- High-density error map and line scans, including absolute radius error
- Single nanometer rms form error repeatability
- Traceable calibration to NMI certified artefacts (flats, spheres, balls etc)

Demonstrated by many measurement examples!

3 x Ø250 mm flat: 6.6, 7.0 and 6.4 nm rms

Calibrated 1" radius reference sphere

NMF Products

- Versatile
 - Flat, convex, concave, sphere, asphere, freeform, off-axis, non-circular
 - Measurement volume

Volume	Max Ø	Max h	-45°	+45°	+90°
NMF350 S	Ø 350 mm	150 mm	Ø 350 mm	Ø170 mm	Ø 100 mm
NMF600 S	Ø600 mm	150 mm	Ø600 mm	Ø420 mm	\varnothing 100 mm
NMF800 S	Ø800 mm	300 mm	Ø800 mm	Ø620 mm	Ø400 mm

- Unlimited asphere departure
- Up to 5 mm PV departure from best-fit asphere
- Selectable objectives (local slope up to ±20°, working distance up to 8 mm)
- High point density for mid-spatials (typical up to 4M points)
- Uncertainty generally < 15 nm rms (worst case freeform < 30 nm rms)
- Glass, mirror, polished & ground surfaces
- Non-contact
- Fast (minutes)
- Easy loading, programming & results processing

NMF Key Principles

Based on original NANOMEFOS concept:

- Universal large volume by cylindrical machine
- Non-contact high speed by long range optical probe (Patented)
- High accuracy by a separate closed-loop metrology system (Patented)
- High accuracy out-of-plane airbearing guidance (Patented)

NMF enables fast freeform measurement by combining: ✓ Axial range (5 mm) ✓ Local slope (± 5°)

- Low NA objective
- ✓ Axial range
- ✗ Local slope
- \Rightarrow No freeforms

High NA objective ★ Axial range ✓ Local slope

 \Rightarrow Very slow (large machine motion)

Measurement examples 10" flat

- Flat 10" $\lambda/20$, supported on three points
- Ø254 mm diameter, Ø245 mm measured
- 4x radial scan, 0.5 mm point spacing surface scan (1 rev/s)
- Measurement time 6:15 minutes

Measurement examples *10" flat*

- Ø240 mm aperture
- Fit position & tilt & power
- Form error repeatability << 1 nm rms

Trefoil corresponds to gravity sag from location of 3 support points

Measurement examples 10" flat

- Difference from average form (point-by-point repeatability)
- Piston-tip-tilt removed
- Point-by-point repeatability about 2 nm rms, power variation < 1 nm</p>

Measurement examples Large optics

- Ø500 mm concave test surface (50 kg), radius of curvature -1.4 m
- Measured at 3 mm pointspacing at 0.25, 0.5 and 1 rev/s
- Measurement time 11 min (0.25 rev/s), 8:30 min (0.5 rev/s), 7 min (1 rev/s)
- Form error repeatability < 2 nm rms, radius < 5 um

RMS = 43.1 nm, PV = 243 nm, dRc = -283 um

RMS = 45.0 nm, PV = 233 nm, dRc = -286 um

RMS = 45.0 nm, PV = 226 nm, dRc = -288 um

Measurement examples Small acylinder

- Small acylinder (3 x 3.5 mm clear aperture)
- Fit position, tilt, rotation and best-fit-radius (ring structure is measurement artefact)
- Form error repeatability is < 1 nm rms, dRc repeatability is < 1 um</p>

Measurement examples Small acylinder

- Small acylinder (3 x 3.5 mm clear aperture)
- Fit position, tilt, rotation and best-fit-radius (ring structure is measurement artefact)
- Form error repeatability is < 1 nm rms, dRc repeatability is < 1 um</p>
- Average point-by-point repeatability is 3.3 nm rms

Measurement examples Tilted flat 0°-7°

- $\lambda/20$ Zerodur flat, Ø30 mm aperture, max 2.5 mm PV
- Fit tilt only (no power removed)
- Flatness error < 7 nm rms for 0-7° using calibrated artefact

Measurement examples *Tilted flat @ 7°*

- $\lambda/20$ Zerodur flat, Ø30 mm aperture, max 2.5 mm PV
- Fit tilt only (no power removed)
- Point-by-point repeatability 3x at 7° is 1.5 nm rms

Measurement examples *Tilted flat 0°-20°*

Ø7.5 mm tilted flat from 0-20° all < 10 nm rms</p>

Measurement examples Mid-spatials characterization of polished mirror

- Polished aspherical mirror blank (center was to be removed)
- Measured full Ø200 mm at 0.1 mm (2k x 2k points), and zoomed on central Ø40 mm at 0.025 mm (1.6k x 1.6k points)
- Radial linescans show centre defect dimensions in high detail

Measurement examples

Mid-spatials characterization of ground surface

- Concave ground surface with mid-spatials
- Valuable to know before starting polishing
- Grinding process optimization
- Up to 5 um Ra tilted flat (diffusor)

Measurement examples Off-axis optics

- Off-axis pieces < Ø600 mm can be measured at their off-axis position
- Pieces > Ø600 mm can be measured centred on the table (e.g. off-axis asphere becomes centred freeform)
- Software automatically does all coordinate transformations

160 mm elliptical aperture, off-axis ellipsoid with 3 mm freeform departure

Measurement examples Non-circular apertures

- Probe must keep lock on surface
- Table makes zig-zag motion
- Enter surface contour using shape or polygon
- Software automatically calculates trajectory

Off-axis asphere measured de-centred

Off-axis non-circular freeform measured centred

Measurement examples Versatility

- IR lens (coated)
- Lens with curvature change
- Hemisphere

. . . .

- Wild freeform
- Large non-circular freeform (coated)
- Large convex asphere
- Concave aspherical mirror

Mounting Kit

- Standard clamp for Ø25 mm or Ø40 mm standard chuck
- Universal mount
 - For circular, rectangular and off-axis optics
 - Simple precision alignment / centering functionality
 - Can be prepared outside machine
 - No further alignment in machine necessary
- Multi-purpose interface plate
- Software to easily configure safety contour for used mount

NMF OS software

- Workflow based software guides user through the process
- Database to store and manage all measurements
- Three simple steps to do a measurement
 - 1. Input surface formula, outside contour and desired measurement area; then software calculates trajectory
 - 2. Press 'Start' to detect surface height and to perform measurement
 - 3. Automatically best-fit design to xyz data to calculate error map, and mask / filter / analyze result as desired
- Zernike and slope analysis
- Export data in all common formats
- Automatically generate pdf report
- Remote assistance in case of questions/problems
- Usually half a day training is sufficient to comfortably operate the machine
- Machine has various crash prevention measures constantly monitoring safe operation

NMF benefits

- "Interferometer accuracy with coordinate measurement machine versatility"
- Enable new and better products for your customers
 - Aspheres, freeforms, off-axis, non-circular apertures
 - Highest accuracy, traceable calibration and simple sanity checks
- Lower production cost and time
 - Optimize process control Mid-spatial measurement, less iterations
 - Improve yield / reduce polishing time
 Measure after grinding, better starting conditions for polishing
 - Higher measurement throughput
 Measure many mixed shapes with minimal setup time
 - No measurement setup cost
 - Easy to use, fully automated fast measurement
- Contact us to perform sample measurements for you!

info@dutchunitedinstruments.com

Appendix: Definitions for surface form

- Surface form (flat to freeform)
- Departure from best-fit-sphere & best-fit-asphere
- Global and local slope

Appendix: Surface data visualization

Note: Some older data still has Parula colormap